Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import type { Types } from '@cornerstonejs/core';
import containsPoint from './containsPoint';
import { projectTo2D } from './projectTo2D';
/**
* Determines whether a 3D point is inside a polyline in 3D space.
*
* The algorithm works by reducing the polyline and point to 2D space, and then
* using the 2D algorithm to determine whether the point is inside the polyline.
*
* @param point - The 3D point to test.
* @param polyline - The polyline represented as an array of 3D points.
* @param options.holesPolyline - An array of polylines representing each hole, so it
* is an array of arrays of 3D points.
* @returns A boolean indicating whether the point is inside the polyline.
* @throws An error if a shared dimension index cannot be found for the polyline points.
*/
export function isPointInsidePolyline3D(
point: Types.Point3,
polyline: Types.Point3[],
options: { holes?: Types.Point3[][] } = {}
) {
const { sharedDimensionIndex, projectedPolyline } = projectTo2D(polyline);
const { holes } = options;
const projectedHoles = [] as Types.Point2[][];
if (holes) {
for (let i = 0; i < holes.length; i++) {
const hole = holes[i];
const hole2D = [] as Types.Point2[];
for (let j = 0; j < hole.length; j++) {
hole2D.push([
hole[j][(sharedDimensionIndex + 1) % 3],
hole[j][(sharedDimensionIndex + 2) % 3],
]);
}
projectedHoles.push(hole2D);
}
}
const point2D = [
point[(sharedDimensionIndex + 1) % 3],
point[(sharedDimensionIndex + 2) % 3],
] as Types.Point2;
return containsPoint(projectedPolyline, point2D, { holes: projectedHoles });
}
|