Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | import { vec3 } from 'gl-matrix';
import { Types } from '@cornerstonejs/core';
function _getAreaVector(polyline: Types.Point3[]): Types.Point3 {
const vecArea = vec3.create();
// Reference point can be any point on the same plane
const refPoint = polyline[0];
// Takes three points, reference point and two other points from each line
// segment, and calculate the area with cross product. The magnitude of the
// vector returned by a cross product is equal to the area of the parallelogram
// that the vectors span which is two times the area of the triangle.
//
// Not calling vec3 mathods makes the function run much faster since polylines
// may have thousands of points when using freehand ROI tool and that would
// increase considerably the number of function calls.
for (let i = 0, len = polyline.length; i < len; i++) {
const p1 = polyline[i];
// Using ternary instead of % (mod) operator to make it faster
const p2Index = i === len - 1 ? 0 : i + 1;
const p2 = polyline[p2Index];
const aX = p1[0] - refPoint[0];
const aY = p1[1] - refPoint[1];
const aZ = p1[2] - refPoint[2];
const bX = p2[0] - refPoint[0];
const bY = p2[1] - refPoint[1];
const bZ = p2[2] - refPoint[2];
// Cross product without calling vec3.cross() for better performance
vecArea[0] += aY * bZ - aZ * bY;
vecArea[1] += aZ * bX - aX * bZ;
vecArea[2] += aX * bY - aY * bX;
}
// Divide by two because cross product returns two times the area for each triangle
vec3.scale(vecArea, vecArea, 0.5);
// The magnitude of the vector is the area of the polyline
return <Types.Point3>vecArea;
}
/**
* Calculate the normal of a 3D planar polyline
* @param polyline - Planar polyline in 3D space
* @returns Normal of the 3D planar polyline
*/
export default function getNormal3(polyline: Types.Point3[]): Types.Point3 {
const vecArea = _getAreaVector(polyline);
return vec3.normalize(vecArea, vecArea) as Types.Point3;
}
|