Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import { glMatrix, vec3 } from 'gl-matrix';
import { ContourAnnotation } from '../../types/ContourAnnotation';
/**
* Check if two contour segmentation annotations are coplanar.
*
* A plane may be represented by a normal and a distance then to know if they
* are coplanar we need to:
* - check if the normals of the two annotations are pointing to the same
* direction or to opposite directions (dot product equal to 1 or -1
* respectively)
* - Get one point from each polyline and project it onto the normal to get
* the distance from the origin (0, 0, 0).
*/
export default function areCoplanarContours(
firstAnnotation: ContourAnnotation,
secondAnnotation: ContourAnnotation
) {
const { viewPlaneNormal: firstViewPlaneNormal } = firstAnnotation.metadata;
const { viewPlaneNormal: secondViewPlaneNormal } = secondAnnotation.metadata;
const dot = vec3.dot(firstViewPlaneNormal, secondViewPlaneNormal);
const parallelPlanes = glMatrix.equals(1, Math.abs(dot));
if (!parallelPlanes) {
return false;
}
const { polyline: firstPolyline } = firstAnnotation.data.contour;
const { polyline: secondPolyline } = secondAnnotation.data.contour;
// Choose one of the normals and calculate the distance of a point from each
// polyline along that normal. Both normal cannot be used with absolute dot
// product values because one of the view planes may be flipped or one of the
// points may be at the same distance but in the opposite direction
const firstDistance = vec3.dot(firstViewPlaneNormal, firstPolyline[0]);
const secondDistance = vec3.dot(firstViewPlaneNormal, secondPolyline[0]);
return glMatrix.equals(firstDistance, secondDistance);
}
|